Algorithm 1035: A Gradient-based Implementation of the Polyhedral Active Set Algorithm
نویسندگان
چکیده
The Polyhedral Active Set Algorithm (PASA) is designed to optimize a general nonlinear function over polyhedron. Phase one of the algorithm nonmonotone gradient projection algorithm, while phase two an active set that explores faces constraint A gradient-based implementation presented, where projected version conjugate employed in two. Asymptotically, only performed. Comparisons are given with IPOPT using polyhedral constrained problems from CUTEst and Maros/Meszaros quadratic programming test set.
منابع مشابه
An active set algorithm for nonlinear optimization with polyhedral constraints
A polyhedral active set algorithm PASA is developed for solving a nonlinear optimization problem whose feasible set is a polyhedron. Phase one of the algorithm is the gradient projection method, while phase two is any algorithm for solving a linearly constrained optimization problem. Rules are provided for branching between the two phases. Global convergence to a stationary point is established...
متن کاملPerformance Analysis of a Polyhedral Boolean Set Operations Algorithm
In performing regularized set. operations on two solids, the most difficult step is boundary classification, in which the boundaries of each solid are split into portions that are inside, outside, or on the surface of the other solid. In this paper, we present a method for doing boundary classification on polyhedral solids and give measurements of the algorithm's time complexity on a number of ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA sparse proximal implementation of the LP dual active set algorithm
We present an implementation of the LPDual Active Set Algorithm (LP DASA) based on a quadratic proximal approximation, a strategy for dropping inactive equations from the constraints, and recently developed algorithms for updating a sparse Cholesky factorization after a low-rank change. Although our main focus is linear programming, the first and second-order proximal techniques that we develop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Mathematical Software
سال: 2023
ISSN: ['0098-3500', '1557-7295']
DOI: https://doi.org/10.1145/3583559